[image: ]



12_Operations/DB_Monitoring_Alerting_Guide.docx

Databricks Monitoring & Alerting Guide




Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice


Document Information
	Field
	Value

	**Version**
	1.0

	**Last Updated**
	2025-01-29

	**Classification**
	Internal Use

	**Owner**
	Platform Operations Team



1. Executive Summary
This guide provides comprehensive patterns for monitoring Databricks workloads and setting up effective alerting. It covers system tables, job monitoring, cluster health, data quality monitoring, and integration with external observability tools. Effective monitoring enables proactive issue detection and faster incident resolution.
Monitoring Principles
Observability: Collect metrics, logs, and traces for complete visibility
Proactive Alerting: Detect issues before they impact users
Actionable Alerts: Every alert should have a clear response action
Appropriate Thresholds: Avoid alert fatigue from noisy alerts
Continuous Improvement: Regularly review and tune monitoring
2. Monitoring Architecture
2.1 Observability Stack
┌─────────────────────────────────────────────────────────────────────────────┐
│                    DATABRICKS MONITORING ARCHITECTURE                        │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │                        DATA SOURCES                                  │    │
│  │                                                                      │    │
│  │  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌────────────┐ │    │
│  │  │   System    │  │   Audit     │  │   Cluster   │  │   Custom   │ │    │
│  │  │   Tables    │  │   Logs      │  │   Logs      │  │   Metrics  │ │    │
│  │  │             │  │             │  │             │  │            │ │    │
│  │  │ • billing   │  │ • access    │  │ • driver    │  │ • app      │ │    │
│  │  │ • lineage   │  │ • activity  │  │ • executor  │  │   metrics  │ │    │
│  │  │ • query     │  │ • changes   │  │ • events    │  │ • business │ │    │
│  │  │   history   │  │             │  │             │  │   KPIs     │ │    │
│  │  └─────────────┘  └─────────────┘  └─────────────┘  └────────────┘ │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
│                                      ▼                                       │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │                     PROCESSING & STORAGE                             │    │
│  │                                                                      │    │
│  │  ┌─────────────────────────────────────────────────────────────┐    │    │
│  │  │                    Delta Lake Tables                         │    │    │
│  │  │  • Metrics history  • Alert events  • SLA tracking          │    │    │
│  │  └─────────────────────────────────────────────────────────────┘    │    │
│  │                                                                      │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
│                    ┌─────────────────┼─────────────────┐                    │
│                    ▼                 ▼                 ▼                    │
│  ┌──────────────────────┐ ┌──────────────────┐ ┌──────────────────────┐    │
│  │  VISUALIZATION       │ │  ALERTING        │ │  EXTERNAL TOOLS      │    │
│  │                      │ │                  │ │                      │    │
│  │  ┌────────────────┐  │ │  ┌────────────┐  │ │  ┌────────────────┐  │    │
│  │  │   Databricks   │  │ │  │   SQL      │  │ │  │   Datadog/     │  │    │
│  │  │   Dashboards   │  │ │  │   Alerts   │  │ │  │   Prometheus   │  │    │
│  │  └────────────────┘  │ │  └────────────┘  │ │  └────────────────┘  │    │
│  │  ┌────────────────┐  │ │  ┌────────────┐  │ │  ┌────────────────┐  │    │
│  │  │   SQL          │  │ │  │   Job      │  │ │  │   PagerDuty/   │  │    │
│  │  │   Dashboards   │  │ │  │   Alerts   │  │ │  │   ServiceNow   │  │    │
│  │  └────────────────┘  │ │  └────────────┘  │ │  └────────────────┘  │    │
│  └──────────────────────┘ └──────────────────┘ └──────────────────────┘    │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
3. System Tables Monitoring
3.1 Job Monitoring
-- Job run history and success rates
SELECT
    job_id,
    job_name,
    COUNT(*) as total_runs,
    SUM(CASE WHEN result_state = 'SUCCESS' THEN 1 ELSE 0 END) as successful_runs,
    SUM(CASE WHEN result_state = 'FAILED' THEN 1 ELSE 0 END) as failed_runs,
    ROUND(100.0 * SUM(CASE WHEN result_state = 'SUCCESS' THEN 1 ELSE 0 END) / COUNT(*), 2) as success_rate_pct,
    AVG(UNIX_TIMESTAMP(end_time) - UNIX_TIMESTAMP(start_time)) / 60 as avg_duration_minutes,
    MAX(UNIX_TIMESTAMP(end_time) - UNIX_TIMESTAMP(start_time)) / 60 as max_duration_minutes
FROM system.lakeflow.job_run_timeline
WHERE start_time >= DATEADD(DAY, -7, CURRENT_TIMESTAMP())
GROUP BY job_id, job_name
ORDER BY failed_runs DESC;

-- Recent job failures with error details
SELECT
    job_id,
    job_name,
    run_id,
    start_time,
    end_time,
    result_state,
    error_message
FROM system.lakeflow.job_run_timeline
WHERE result_state = 'FAILED'
AND start_time >= DATEADD(DAY, -1, CURRENT_TIMESTAMP())
ORDER BY start_time DESC;

-- Job duration trends (detect slowdowns)
SELECT
    job_id,
    job_name,
    DATE(start_time) as run_date,
    AVG(UNIX_TIMESTAMP(end_time) - UNIX_TIMESTAMP(start_time)) / 60 as avg_duration_minutes,
    -- Compare to 7-day rolling average
    AVG(AVG(UNIX_TIMESTAMP(end_time) - UNIX_TIMESTAMP(start_time)) / 60) OVER (
        PARTITION BY job_id
        ORDER BY DATE(start_time)
        ROWS BETWEEN 7 PRECEDING AND 1 PRECEDING
    ) as rolling_avg_duration
FROM system.lakeflow.job_run_timeline
WHERE start_time >= DATEADD(DAY, -30, CURRENT_TIMESTAMP())
GROUP BY job_id, job_name, DATE(start_time)
HAVING avg_duration_minutes > rolling_avg_duration * 1.5  -- 50% slower than average
ORDER BY run_date DESC;
3.2 Query Performance Monitoring
-- Slow queries in SQL warehouses
SELECT
    statement_id,
    user_name,
    warehouse_id,
    statement_text,
    start_time,
    total_duration_ms / 1000 as duration_seconds,
    rows_produced,
    bytes_scanned / (1024 * 1024 * 1024) as gb_scanned
FROM system.query.history
WHERE start_time >= DATEADD(HOUR, -24, CURRENT_TIMESTAMP())
AND total_duration_ms > 60000  -- Queries > 1 minute
ORDER BY total_duration_ms DESC
LIMIT 50;

-- Query error summary
SELECT
    DATE(start_time) as query_date,
    error_message,
    COUNT(*) as error_count,
    COUNT(DISTINCT user_name) as affected_users
FROM system.query.history
WHERE start_time >= DATEADD(DAY, -7, CURRENT_TIMESTAMP())
AND status = 'FAILED'
GROUP BY DATE(start_time), error_message
ORDER BY query_date DESC, error_count DESC;

-- Warehouse utilization
SELECT
    warehouse_id,
    DATE_TRUNC('hour', start_time) as hour,
    COUNT(*) as query_count,
    SUM(total_duration_ms) / 1000 / 3600 as total_compute_hours,
    AVG(total_duration_ms) / 1000 as avg_query_seconds,
    MAX(total_duration_ms) / 1000 as max_query_seconds
FROM system.query.history
WHERE start_time >= DATEADD(DAY, -7, CURRENT_TIMESTAMP())
GROUP BY warehouse_id, DATE_TRUNC('hour', start_time)
ORDER BY hour DESC;
3.3 Cluster Monitoring
-- Cluster utilization (from cloud metrics or cluster logs)
-- This example uses custom metrics table

-- Create metrics collection view
CREATE OR REPLACE VIEW monitoring.cluster_metrics AS
SELECT
    cluster_id,
    cluster_name,
    timestamp,
    cpu_utilization_pct,
    memory_utilization_pct,
    disk_utilization_pct,
    network_bytes_sent,
    network_bytes_received
FROM monitoring.raw_cluster_metrics;

-- Cluster utilization summary
SELECT
    cluster_id,
    cluster_name,
    DATE(timestamp) as metric_date,
    AVG(cpu_utilization_pct) as avg_cpu_pct,
    MAX(cpu_utilization_pct) as max_cpu_pct,
    AVG(memory_utilization_pct) as avg_memory_pct,
    MAX(memory_utilization_pct) as max_memory_pct
FROM monitoring.cluster_metrics
WHERE timestamp >= DATEADD(DAY, -7, CURRENT_TIMESTAMP())
GROUP BY cluster_id, cluster_name, DATE(timestamp);

-- Under-utilized clusters (cost optimization opportunity)
SELECT
    cluster_id,
    cluster_name,
    AVG(cpu_utilization_pct) as avg_cpu_pct,
    AVG(memory_utilization_pct) as avg_memory_pct
FROM monitoring.cluster_metrics
WHERE timestamp >= DATEADD(DAY, -7, CURRENT_TIMESTAMP())
GROUP BY cluster_id, cluster_name
HAVING AVG(cpu_utilization_pct) < 30
   AND AVG(memory_utilization_pct) < 30;
4. Alerting Configuration
4.1 SQL Alerts
SQL Alerts trigger notifications based on query results:
-- Alert: Job failure rate exceeds threshold
-- Create this as a SQL Alert in Databricks SQL

-- Query for the alert
SELECT
    job_id,
    job_name,
    COUNT(*) as total_runs,
    SUM(CASE WHEN result_state = 'FAILED' THEN 1 ELSE 0 END) as failed_runs,
    ROUND(100.0 * SUM(CASE WHEN result_state = 'FAILED' THEN 1 ELSE 0 END) / COUNT(*), 2) as failure_rate_pct
FROM system.lakeflow.job_run_timeline
WHERE start_time >= DATEADD(HOUR, -24, CURRENT_TIMESTAMP())
GROUP BY job_id, job_name
HAVING failure_rate_pct > 10;  -- Alert if > 10% failure rate

-- Alert triggers when query returns rows
-- Configure: Schedule every 15 minutes, alert when rows > 0
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.sql import (
    CreateAlertRequest,
    AlertOptions,
    AlertOptionsOperator
)

w = WorkspaceClient()

# Create SQL alert for job failures
alert = w.alerts.create(
    name="High Job Failure Rate",
    query_id="your-query-id",  # Query ID from above
    options=AlertOptions(
        column="failure_rate_pct",
        op=AlertOptionsOperator.GREATER_THAN,
        value="10"
    ),
    rearm=900  # Re-arm after 15 minutes (avoid alert storms)
)

# Configure alert destination (email, Slack, webhook)
w.alert_destinations.create(
    name="ops-team-email",
    config={
        "email": {
            "addresses": ["ops-team@company.com"]
        }
    }
)
4.2 Job-Level Alerts
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.jobs import (
    JobEmailNotifications,
    WebhookNotifications,
    Webhook
)

w = WorkspaceClient()

# Update job with comprehensive alerting
w.jobs.update(
    job_id=job_id,
    new_settings={
        "name": "Critical ETL Pipeline",
        "email_notifications": JobEmailNotifications(
            on_start=["job-monitoring@company.com"],
            on_success=["job-success@company.com"],
            on_failure=["critical-alerts@company.com", "oncall@company.com"],
            on_duration_warning_threshold_exceeded=["job-monitoring@company.com"],
            no_alert_for_skipped_runs=True
        ),
        "webhook_notifications": WebhookNotifications(
            on_failure=[
                Webhook(id="pagerduty-webhook-id"),
                Webhook(id="slack-webhook-id")
            ]
        ),
        "health": {
            "rules": [
                {
                    "metric": "RUN_DURATION_SECONDS",
                    "op": "GREATER_THAN",
                    "value": 7200  # Alert if > 2 hours
                }
            ]
        },
        "timeout_seconds": 14400  # Kill job after 4 hours
    }
)
4.3 Data Quality Alerts
-- Data freshness alert
-- Alert if table hasn't been updated in expected timeframe

SELECT
    table_catalog,
    table_schema,
    table_name,
    last_altered as last_update_time,
    TIMESTAMPDIFF(HOUR, last_altered, CURRENT_TIMESTAMP()) as hours_since_update
FROM system.information_schema.tables
WHERE table_schema = 'gold'
AND table_name IN ('daily_sales', 'customer_metrics', 'product_inventory')
AND TIMESTAMPDIFF(HOUR, last_altered, CURRENT_TIMESTAMP()) > 24;  -- > 24 hours stale

-- Row count anomaly alert
-- Alert if row count changes significantly
WITH current_counts AS (
    SELECT 'daily_sales' as table_name, COUNT(*) as row_count FROM gold.daily_sales
    UNION ALL
    SELECT 'customers' as table_name, COUNT(*) as row_count FROM gold.customers
),
baseline AS (
    -- Baseline from yesterday (stored in monitoring table)
    SELECT table_name, row_count as baseline_count
    FROM monitoring.table_baselines
    WHERE baseline_date = CURRENT_DATE() - INTERVAL 1 DAY
)
SELECT
    c.table_name,
    c.row_count as current_count,
    b.baseline_count,
    ROUND(100.0 * (c.row_count - b.baseline_count) / b.baseline_count, 2) as change_pct
FROM current_counts c
JOIN baseline b ON c.table_name = b.table_name
WHERE ABS((c.row_count - b.baseline_count) / b.baseline_count) > 0.1;  -- > 10% change
5. Dashboard Templates
5.1 Operations Dashboard
-- Create views for operations dashboard

-- View: Job Health Summary
CREATE OR REPLACE VIEW monitoring.job_health_summary AS
SELECT
    job_name,
    COUNT(*) as runs_24h,
    SUM(CASE WHEN result_state = 'SUCCESS' THEN 1 ELSE 0 END) as successes,
    SUM(CASE WHEN result_state = 'FAILED' THEN 1 ELSE 0 END) as failures,
    ROUND(100.0 * SUM(CASE WHEN result_state = 'SUCCESS' THEN 1 ELSE 0 END) / COUNT(*), 1) as success_rate,
    ROUND(AVG(UNIX_TIMESTAMP(end_time) - UNIX_TIMESTAMP(start_time)) / 60, 1) as avg_duration_min
FROM system.lakeflow.job_run_timeline
WHERE start_time >= DATEADD(HOUR, -24, CURRENT_TIMESTAMP())
GROUP BY job_name;

-- View: Hourly Query Volume
CREATE OR REPLACE VIEW monitoring.hourly_query_volume AS
SELECT
    DATE_TRUNC('hour', start_time) as hour,
    warehouse_id,
    COUNT(*) as query_count,
    SUM(CASE WHEN status = 'FAILED' THEN 1 ELSE 0 END) as failed_queries,
    AVG(total_duration_ms) / 1000 as avg_duration_sec
FROM system.query.history
WHERE start_time >= DATEADD(DAY, -7, CURRENT_TIMESTAMP())
GROUP BY DATE_TRUNC('hour', start_time), warehouse_id;

-- View: Current Running Jobs
CREATE OR REPLACE VIEW monitoring.running_jobs AS
SELECT
    job_id,
    job_name,
    run_id,
    start_time,
    ROUND((UNIX_TIMESTAMP(CURRENT_TIMESTAMP()) - UNIX_TIMESTAMP(start_time)) / 60, 1) as running_minutes,
    state
FROM system.lakeflow.job_run_timeline
WHERE state = 'RUNNING';
5.2 SLA Tracking Dashboard
-- SLA tracking view
CREATE OR REPLACE VIEW monitoring.sla_tracking AS
WITH job_slas AS (
    -- Define SLAs for critical jobs
    SELECT 'Daily Sales ETL' as job_name, '08:00:00' as sla_time, 60 as max_duration_min
    UNION ALL
    SELECT 'Customer 360 Refresh', '06:00:00', 120
    UNION ALL
    SELECT 'Inventory Sync', '07:00:00', 30
),
job_runs AS (
    SELECT
        job_name,
        DATE(start_time) as run_date,
        MIN(start_time) as first_start,
        MAX(end_time) as last_end,
        MAX(result_state) as result_state,
        MAX(UNIX_TIMESTAMP(end_time) - UNIX_TIMESTAMP(start_time)) / 60 as duration_min
    FROM system.lakeflow.job_run_timeline
    WHERE start_time >= DATEADD(DAY, -30, CURRENT_TIMESTAMP())
    GROUP BY job_name, DATE(start_time)
)
SELECT
    s.job_name,
    r.run_date,
    s.sla_time,
    s.max_duration_min as sla_duration_min,
    TIME(r.last_end) as completion_time,
    r.duration_min as actual_duration_min,
    r.result_state,
    CASE
        WHEN r.result_state != 'SUCCESS' THEN 'FAILED'
        WHEN TIME(r.last_end) > s.sla_time THEN 'SLA_BREACH'
        WHEN r.duration_min > s.max_duration_min THEN 'DURATION_BREACH'
        ELSE 'MET'
    END as sla_status
FROM job_slas s
LEFT JOIN job_runs r ON s.job_name = r.job_name;
6. External Integration
6.1 Prometheus/Grafana Integration
# Export metrics to Prometheus format

from prometheus_client import Gauge, Counter, start_http_server
import time

# Define metrics
job_success_rate = Gauge(
    'databricks_job_success_rate',
    'Job success rate percentage',
    ['job_name']
)

job_duration = Gauge(
    'databricks_job_duration_seconds',
    'Job duration in seconds',
    ['job_name']
)

query_count = Counter(
    'databricks_query_total',
    'Total queries executed',
    ['warehouse_id', 'status']
)

# Update metrics from system tables
def update_metrics():
    # Query system tables and update metrics
    job_metrics = spark.sql("""
        SELECT job_name, success_rate, avg_duration
        FROM monitoring.job_health_summary
    """).collect()

    for row in job_metrics:
        job_success_rate.labels(job_name=row.job_name).set(row.success_rate)
        job_duration.labels(job_name=row.job_name).set(row.avg_duration)

# Run metrics server
start_http_server(8000)
while True:
    update_metrics()
    time.sleep(60)
6.2 PagerDuty Integration
import requests

def send_pagerduty_alert(
    routing_key: str,
    summary: str,
    severity: str = "critical",
    source: str = "databricks",
    details: dict = None
):
    """Send alert to PagerDuty."""

    payload = {
        "routing_key": routing_key,
        "event_action": "trigger",
        "payload": {
            "summary": summary,
            "severity": severity,
            "source": source,
            "custom_details": details or {}
        }
    }

    response = requests.post(
        "https://events.pagerduty.com/v2/enqueue",
        json=payload
    )
    return response.json()

# Example: Alert on job failure
send_pagerduty_alert(
    routing_key="your-pagerduty-routing-key",
    summary="Critical job 'Daily ETL' failed",
    severity="critical",
    details={
        "job_id": "123",
        "run_id": "456",
        "error": "OutOfMemoryError"
    }
)
7. Best Practices
7.1 Alert Design Principles
	Principle
	Description

	**Actionable**
	Every alert should have a clear response action

	**Specific**
	Include enough context to diagnose the issue

	**Timely**
	Alert soon enough to prevent user impact

	**Non-Redundant**
	Avoid duplicate alerts for same issue

	**Prioritized**
	Critical vs. warning vs. info levels



7.2 Monitoring Checklist
	Area
	What to Monitor
	Alert Threshold

	**Jobs**
	Success rate
	< 95% over 24h

	**Jobs**
	Duration
	> 2x average

	**Jobs**
	Stuck jobs
	Running > 4 hours

	**Queries**
	Error rate
	> 5% in 1 hour

	**Queries**
	Slow queries
	> 5 min average

	**Data**
	Freshness
	> SLA deadline

	**Data**
	Row count anomaly
	> 10% change

	**Clusters**
	Failures
	Any failure

	**Cost**
	Daily spend
	> budget



Document Control
	Version
	Date
	Author
	Changes

	1.0
	2025-01-29
	Platform Ops Team
	Initial document



This document is maintained by the Platform Operations Team. For questions or updates, contact the team via the #platform-ops Slack channel.
image1.png
#MAST=CH
DIGITAL








